15 research outputs found

    Book Review: Genetics for Everyone

    Get PDF
    Review of The Gene: An Intimate History, by Siddhartha Mukherjee (New York: Scribner, 2016)

    What are the consequences of combining nuclear and mitochondrial data for phylogenetic analysis? Lessons from Plethodon salamanders and 13 other vertebrate clades

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of mitochondrial DNA data in phylogenetics is controversial, yet studies that combine mitochondrial and nuclear DNA data (mtDNA and nucDNA) to estimate phylogeny are common, especially in vertebrates. Surprisingly, the consequences of combining these data types are largely unexplored, and many fundamental questions remain unaddressed in the literature. For example, how much do trees from mtDNA and nucDNA differ? How are topological conflicts between these data types typically resolved in the combined-data tree? What determines whether a node will be resolved in favor of mtDNA or nucDNA, and are there any generalities that can be made regarding resolution of mtDNA-nucDNA conflicts in combined-data trees? Here, we address these and related questions using new and published nucDNA and mtDNA data for <it>Plethodon </it>salamanders and published data from 13 other vertebrate clades (including fish, frogs, lizards, birds, turtles, and mammals).</p> <p>Results</p> <p>We find widespread discordance between trees from mtDNA and nucDNA (30-70% of nodes disagree per clade), but this discordance is typically not strongly supported. Despite often having larger numbers of variable characters, mtDNA data do not typically dominate combined-data analyses, and combined-data trees often share more nodes with trees from nucDNA alone. There is no relationship between the proportion of nodes shared between combined-data and mtDNA trees and relative numbers of variable characters or levels of homoplasy in the mtDNA and nucDNA data sets. Congruence between trees from mtDNA and nucDNA is higher on branches that are longer and deeper in the combined-data tree, but whether a conflicting node will be resolved in favor mtDNA or nucDNA is unrelated to branch length. Conflicts that are resolved in favor of nucDNA tend to occur at deeper nodes in the combined-data tree. In contrast to these overall trends, we find that <it>Plethodon </it>have an unusually large number of strongly supported conflicts between data types, which are generally resolved in favor of mtDNA in the combined-data tree (despite the large number of nuclear loci sampled).</p> <p>Conclusions</p> <p>Overall, our results from 14 vertebrate clades show that combined-data analyses are not necessarily dominated by the more variable mtDNA data sets. However, given cases like <it>Plethodon</it>, there is also the need for routine checking of incongruence between mtDNA and nucDNA data and its impacts on combined-data analyses.</p

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe

    Is Geographic Variation within Species Related to Macroevolutionary Patterns between Species?

    No full text
    The relationship between microevolution and macroevolution is a central topic in evolutionary biology. An aspect of this relationship that remains very poorly studied in modern evolutionary biology is the relationship between within-species geographic variation and among-species patterns of trait variation. Here, we tested the relationship between climate and morphology among and within species in the salamander genus Plethodon. We focus on a discrete color polymorphism (presence and absence of a red dorsal stripe) that appears to be related to climatic distributions in a common, wide-ranging species (Plethodon cinereus). We find that this trait has been variable among (and possibly within) species for \u3e 40 million years. Furthermore, we find a strong relationship among species between climatic variation and within-species morph frequencies. These between-species patterns are similar (but not identical) to those in the broadly distributed Plethodon cinereus. Surprisingly, there are no significant climate-morphology relationships within most other polymorphic species, despite the strong between-species patterns. Overall, our study provides an initial exploration of how within-species geographic variation and large-scale macroevolutionary patterns of trait variation may be related

    Plenary 3: Where the Wild Things Are: A Field Guide to Animal Research at BSU

    No full text
    During the past decade, research focused on animal behavior and ecology has greatly expanded at BSU. Though our research species, departments and settings vary, shared concerns and overlapping approaches will be brought together with this panel. Including research conducted in both field and captive situations, panelists will showcase their own scholarly work, explore their rationale behind doing animal research, and share how concerns and safeguards for animal welfare are built into their studies. Apes, bats, reptiles, amphibians and bees, oh my! Topics will include what we have learned about animal behavior and intelligence, global climate and environmental change, disease, genetics, habitat destruction, the importance of biodiversity conservation and much more

    Causes of warm-edge range limits: Systematic review, proximate factors and implications for climate change

    No full text
    Aim: The factors that set species range limits underlie many patterns in ecology, evolution, biogeography and conservation. These factors have been the subject of several reviews, but there has been no systematic review of the causes of warm-edge limits

    How does climate change cause extinction?

    No full text
    Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies
    corecore